$\qquad$
Hour: $\qquad$ Date: $\qquad$

## Density

Density is measured as the mass of an object divided by its volume. For example, if an object with a volume of $50 \mathrm{~cm}^{3}$ weighs 30 g , its density is $30 / 50 \mathrm{~g} / \mathrm{cm}^{3}$, which is $0.6 \mathrm{~g} / \mathrm{cm}^{3}$.

Density determines whether a substance will sink or float when placed in a second substance. The substance with less density will always float.

Use the information provided to answer the questions below.
Find the density of the following: $\quad D=m / v$

| Substance | Volume in $\mathbf{c m}^{\mathbf{3}}$ | Mass in $\mathbf{g}$ | Density in $\mathbf{g} / \mathbf{c m}^{\mathbf{3}}$ |
| :---: | :---: | :---: | :---: |
| Gasoline | 5 | 3.5 |  |
| Milk | 10 | 10.3 |  |
| Gold | 8 | 154.4 |  |
| Aluminum | 12 | 32.4 |  |
| Water (at $\mathbf{4}^{\circ} \mathbf{C}$ ) | 14 | 14 |  |
| Water (at $\mathbf{2 0}{ }^{\circ} \mathrm{C}$ ) | 16 | 15.968 |  |
| Ice (at $\mathbf{0}^{\circ} \mathbf{C}$ ) | 20 | 18.4 |  |

Answer the following questions based on the numbers from the chart above:

1. When milk is mixed with gasoline, which substance will float?
2. Why do ice cubes always float at the top of a glass of water?
3. If the density of iron is $7.8 \mathrm{~g} / \mathrm{cm}^{3}$ and you find an iron nail weighing 15 g , what would the volume of the nail be?
